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Abstract This paper investigates a family of modified Runge-Kutta-Nystrom
(RKN) methods for the integration of second-order ordinary differential equations
with oscillatory solutions. The order conditions for up to order five are presented.
Two new optimized explicit four-stage modified RKN methods are derived by nulli-
fying their dispersions and the dissipations in two different ways, respectively. These
methods are checked to be of algebraic order five and both are dispersive of order
six and dissipative of order five. The stability is examined and the error formulas are
analyzed to show that advantages of the new methods compared with some highly
efficient integrators from the recent literature. The high accuracy of the second new
method is explained by its comparatively small dispersion and dissipation constants.
In the integration of the resonance problem and the bound-states problem of the radial
Schrddinger equation with the Woods-Saxon potential, the numerical results show the
effectiveness and robustness of the new methods.
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1 Introduction

In the past two decades, there has been increasing interest in effective time-integra-
tion of the Schrodinger equation, which is of great importance in quantum physics,
chemistry, biology etc. The radial or one dimensional Schrodinger equation we are
concerned with in this paper has the form

Y'(x) = (W) = E)y(), ey

where the real number E is the energy, the function W(x) = [(I+ 1) /)c2 + V(x) is the
effective potential satisfying W(x) — 0 as x — oo, the given integer [ represents the
angular momentum and the function V (x) is the potential. Two boundary conditions
are associated with this equation: one is y(0) = 0 and the other imposed at large x is
determined by physical considerations. The form of this second boundary condition
depends crucially on the sign of the energy E.

Ithas been universally acknowledged that when applied to the Schrédinger equation
(1), general-purpose integrators cannot produce satisfactory numerical results. In the
past decade, much attention has been concentrated on the design and analysis of effec-
tive and efficient integrators for the approximate solution of the radial Schrodinger
equation (1) or for general second-order ordinary differential equations with oscilla-
tory solutions ([1-71]). The vast literature in this direction can be broadly divided into
four significant categories: (a) Runge-Kutta (RK) and Runge-Kutta Nystrom (RKN)
type methods that are phase-fitted and numerical methods with maximal dispersion
order; (b) Exponentially/trigonometrically fitted RK and RKN or two-step methods;
(c) Multistep phase-fitted methods and multistep methods with minimal phase-lag;
(d) Symplectic and/or symmetric integrators for problems which can be regarded as
Hamiltonian systems.

Compared with multistep methods whose implementation requires a series of start-
ing values, Runge-Kutta (-Nystrom) (RK(N)) type methods are more favorable because
the initial values that are available in advance are sufficient for them to run. Regard-
ing the oscillatory character of the solution to the Schrodinger equation (1), the task
of this paper is to adapt modified RKN methods to the numerical integration of the
radial Schrédinger equation (1). Section 2 presents order conditions and phase prop-
erties for modified RKN methods. In Sect. 3, we derive two new optimized modified
RKN methods. In Sect. 4 we carry out the error analysis for the new methods and
for five methods from the recent literature. In Sect. 5, we discuss the numerical sta-
bility of the new methods. Numerical results are reported in Sect. 6 to show the
effectiveness and competence of our new methods. Section 7 is devoted to conclu-
sions.

@ Springer



392 J Math Chem (2013) 51:390-411

2 Modified RKN methods and phase properties
2.1 Order conditions for modified Runge-Kutta-Nystrom methods

We start by considering the initial value problem of the second-order ODEs of the
form

y'= fx,y),

y(x0) = yo, ¥'(x0) = yp. ()

Definition 1 An s-stage explicit modified Runge-Kutta-Nystrom (RKN) method for
the numerical solution of (2) reads

i—1
ki = f(xp +cih, vivn —i—cihy,’l —i—hzZaijkj), i=1,...,s,

j=1
N
Ykl = Ya +hyy D biki,
i=1
s
Vi1 = Yu+h D biki, 3)
i=1
where y; = y;(v) (i = 1,...,s) are even functions of v = hw. The scheme (3) can
be expressed by the Butcher tableau
0| n
e | 2 | au
cly | A
};T = Cs Vs (223} e lgs—1
bt b Byt b
1 s—1 s
bl bs—l b?

or can be simply denoted by (c, y, A, b, b).

Here, following the approach of exponential-fitting and/or phase-fitting in [1,30,
49], the frequency-depending parameters y; = y;(v), i = 1, ..., s, are introduced to
adapt the traditional RKN method to the oscillatory feature of the solution to the prob-
lem. It is assumed that lin}) yi(v) =1,1=1,...,s sothat as v — 0, the modified

vV—>

RKN method (3) reduces to a traditional RKN method. In next section, we optimize
the methods by nullifying the dispersion and dissipation.

The algebraic order conditions presented in [72] are not fit for the modified RKN
method (3). To overcome the difficulty, we write

2.2 @, 4 ©),,6

Yi=1l+y,"vi+y, v+, +-e
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2j

; 1
where yl.(2] ) = ————=vi(0),j = 1,2,..., and obtain the following conditions

2j) dv2i

for the explicit modified RKN method (3) to be of up to order five:

Order 1 requires:
> bi—1=0. )
Order 2 requires in addition:
bcl— =0, Ei—lzo. ®)
2

Order 3 requires in addition:

1 1 - 1
leiC,-z—§=0, IZ;biaik_g:O’ lzbiyi(Z)zo’ Z‘,bici—g=0

(6)
Order 4 requires, in addition:
ZbiC? - % =0, Zzbiciaik - % =0, lzzk:biaikck — % =0,
Zbclyl =0, Zbc —O ZZba,k —O Zb,yl
(N

Order 5 requires, in addition:
le,’C?—%ZO, Zzbic’?aik — 1—1020, ZZZbiciaikail—%:O,
ZZbic,a,kck —— =0, ZZb a,kck =0,
ik
Zzzbiaikakl - m =
Zb )2 =0, Zb 2y? =0, ZZbiaiky,f”:o, Zb,-yi(“)_
ZI;,-C? 2O_O ZZbc,a,k——: ZZbalkck =0,
i
Zl;iciyi =0. (8)
i
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2.2 Phase properties of modified RKN methods

For a traditional RKN method or the modified RKN method (3) solving oscillatory

problems, apart from the local truncation error, the numerical solution may also have

errors in phase and amplification factor. To specify, let us consider the test equation
Y'= -0y, 0 R, ©)

whose exact solution at x;, = xo + nh can be written in the form

y(xp) = acos(nv+¢o), v=ho,

where the constants « and ¢ can be determined by the initial values of the problem.
The solution to the test Eq. (9) and its derivative satisfy

y(xy +h) _ y(xn)
(hy’(xn + h)) = Mo(v) (hy’(xn)) :

where

sin(v)
Mo(v) = (COS(”) 5 ) b= wh. (10)

—vsin(v) cos(v)

If we apply the modified RKN methods (3) to the test Eq. (9), we obtain the relation

Yn+1 Yn
-M ,
(MH ) © (hyé)

where

25T -1 _ 25T p—1
1—vb'N~'y 1—vb'N c)’ an

M@) = (—vaTN_ly 1—v?pIN~le
with N = I +12A, e = (1,.... DT,y = (y1...., ¥)T, and the operation . is
understood as component-wise multiplication.

Definition 2 (see [73]) For a modified RKN method (3) with M (v) given by (11), the
two quantities

¢ (v) = v — arccos M , dv) =1—,/det (M(v)),
2,/det (M(v))

are called the dispersion (or phase lag) and the dissipation (error of amplification
factor) of the method, respectively. The method is said to be dispersive of order g and
dissipative of order r if
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o) =001, dw) =00 .

If p(v) = 0, 1e., g = 0o, and D(v) = 0, i.e., r = oo, then the method is said
to be zero-dispersive (or phase-fitted) and zero-dissipative (or amplification-fitted),
respectively.

It has been known that classical RKN methods with constant coefficients cannot
give satisfactory results when applied to second-order oscillatory problems due to
dispersion or dissipation. For example, for the fourth order RKN method

0
1/5] 1/50

2/3|-1/27 1/27

1[3/10 —2/35 9/35
1/24 25/84 9/56 0
1/24 125/336 27/56 5/48

12)

the dispersion and dissipation are

I A e s
¢(v) = 67201) + W), d) = 36001) + (v°).

Therefore, the method (12) is dispersive of order six and dissipative of order five.

The idea of this paper is to choose appropriate coefficients y;(v) (i = 1,...,s)
such that the modified RKN method (3) can be zero-dispersive and zero-dissipative.

3 Construction of the new methods

In this paper, we consider the explicit four-stage modified RKN methods given by the
tableau

0 n
1/5]y2| 1/50
2/3\y3|—1/27 7/27 (13)
1 |ya] 3/10 —=2/35 9/35
1/24 25/84 9/56 O
1/24 125/336 27/56 5/48
where y; = 1, i = 1,...,4, are generally even functions of v = hw. If we choose

yi =1,1=1,...,4, the classical fifth order RKN method (12) is recovered in [72].
Following the lines in [18,19], for convenience of computation, we use the expression

tr(M(v)) tr(M(v))

cos v — ————=— for the dispersion in place of v — arccos | ————=—
2,/det (M(v)) 2,/det (M (v))

in Definition 2.
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3.1 The first optimized modified RKN method

We first consider the case where y; = y4 = 1 in (13) while y, and y3 depend on v. In
this case, the dispersion and the dissipation can be given by

R
= -, 14
¢ (v) = cos(v) 2/0 (14)

dwv)=1-/0, (15)
where

0 = 20160 + 600(25y> + 108y3 — 133)v? 4+ 100(35 + 19y, — 54y3)0*
+(427 — 675y, + 360y3)v° — 1408,
R = (25200 — 7591 + 50> + 27y3)v? + 525(1 + yo)v* — 28v°)/12600.

Letting the expressions in (14) and (15) vanish yields

¥2 = (360y3(180— 150? +v+) +7(50002 — 11400+ 61v* —200)) / (25(27v* — 76v* —600)),
y3 = (432000 — 40428007 + 37620v* + 56550° — 782v® + 3000 — 432000 cos(v)
—547200% cos(v) + 194400 cos(v)) /(271 (24600 — 9000 — 235v% + 8v°%)).

For small v, the above formulas are subject to heavy cancelations and in that case
the following Taylor series expansions can be used

- 2v N 1469v° N 50908 N 3276761v'°
2= 625 ' 3937500 10546875 = 649687500000
616230539912 N
1330235156250000 ’
vt 28910 1318 2648977v10
y3=1-—"~—— + +
405 1701000 12150000 841995000000
5170488637v!2

11493231750000000 ~ "

The local truncation error formulas of this new method are given by

*y@(x) — y©(x) 16

LTE = y(Xn41) — Yn41 = 1300 + 00",
4300yP(x)  1T0*yP(x) y®(x)
DLTE := y'Gn1) =Yyt =( 756000 54000 16800 W +O®?).

Hence the method is of order five, and we denoted it as MODRKNA.

@ Springer



J Math Chem (2013) 51:390-411 397

3.2 The second optimized modified RKN method

In order to construct another modified RKN method, we set y;,i =1, ..., 4 free and
nullify the phase-lag of the method for two different model equations of the form
(9) with ® = w1 and w = w», respectively. Then substituting v = v; = wih and
vV = vy = wyh in the Egs. (14)—(15), we obtain a system of four linear equations in
the four parameters y;,i = 1, 2, 3, 4. The solutions y; contain two parameters v and
vy. By considering the limits vi — v and v, — v, we get the y-values as follow

Y1 = 2(207360 — 69120017 + 174240v* — 187200° + 900v® — 400! 4 v
—2073600 cos(v) + 6912001 cos(v) — 230401 cos(v) — 2880v° cos(v)
—1036800v sin(v) + 86400v° sin(v) + 5760v° sin(v) — 72007 sin(u))/3M,

y2 = (51840000 — 21427200v% + 2606400v* — 60480v° — 30960v® + 4400v'°

—1950'2 4 3v™* — 51840000 cos(v) + 214272000 cos(v) — 3686400v* cos(v)
+190080v° cos(v) + 2160v® cos(v) — 25920000 sin(v) + 10713600v> sin(v)
—13248000° sin(v) + 6048007 sin(v) — 360v” sin(v))/75M,

¥ = (—1244160000 + 1036800000v> — 277660800v* + 42537600v° — 343512018
+76960v'0 + 580002 — 3800 + 7116 + 1244160000 cos(v) + 32112007 sin(v)
—1036800000v% cos(v) + 288460800v* cos(v) — 31737600v° cos(v)
—20160v'° cos(v)+622080000v sin(v) —4579200000° sin(v) +906624001° sin(v)
+13795200% cos(v) — 79632000 sin(v) — 5040v'! sin(v))/1350M,

va = (881280000 —81260000v> 42345616001 —382032000° + 301464008 —591200 10
—3875v!% 4 23501 — 4016 — 881280000 cos(v) + 81216000002 cos(v)
—214041600v* cos(v) + 19843200v° cos(v) — 631440v% cos(v) + 115200'°
+440640000v sin(v) + 3542400000 sin(v) — 62956800v° sin(v)
+4766400v7 sin(v) — 161640v° sin(v) + 2880v!! sin(v))/375M,

where M = v*(120 — 2012 +v*). Asv — 0,y; (i = 1,...,4) have the following
Taylor series

202 vt Vo v8 283110
M=+ 95+ 56T 055 " 57004~ Tesieson T
w2 187v? po 2137v8 2010
=125+ 5100 T 1512 T 29896000 2837835 T
202 9204 po 677v8 230047010

— 14 = _ — -
v * 135 37800 5250 * 89812800 * 20432412000 T

202 1571v* 2881v° 681718 97910
—+ + + — + -
75 21000 © 945000 @ 49896000 32248125

va=1-—
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The local truncation error formulas of this method are given by

o*y® () + 207y ® (x) + y© (x)

LTE : = y(n41) — Ynt1 = — 1300 he + o),
130y@(x,)  130*yP(xn)  y®(xn)
DLTE : = y’(xn+1)—yé+1=( 25yzoo - 16y800 - _y16808 W+ O(K).

Therefore, the method is of order five, and we denoted it as MODRKNB.

4 Error analysis

In section, we follow the approach of by Simos for the numerical integration of
Schrodinger equation in [5-7] and carry out the error analysis for the new meth-
ods derived in Sect. 3 as well as some other highly efficient methods we select from
the literature. The methods we shall analyze are listed as follows:

e EFRKNS5V: The fifth-order exponentially fitted RKN method given by Van de
Vyver in [74].

e RKNS5PL-AM-DAM: The optimized fifth-order RKN method derived by Kosti
etal.in [18].

e RKNSPL-DPL-AM: The optimized fifth-order RKN method derived by Kosti
etal. in [19].
RKNS5H: The fifth-order RKN method obtained by Van de Vyver in [75].
EFRKNSS: The fifth-order exponentially fitted RKN method derived by Kalogi-
ratou et al. in [44].
MODRKNA: The new fifth-order RKN method derived in Sect. 3.1 of this paper.
MODRKNB: The new fifth-order RKN method derived in Sect. 3.2 of this paper.

The following procedure of error analysis can also been found in Simos [41] and
Alolyan et al. [42]:

1) Write the one-dimensional Schrodinger equation in the form

Y = f)y). (16)
ii) According Ixaru and Rizea [76], put the function f(x) as

fx) =gk +G, (17)

where g(x) = W(x) — V., where V, is a constant approximation of the potential
E and G =V, — E is the error of the approximation.

iii) Give the derivative values of y,(,i) .1 =2,3,4..., which are terms of the local
truncation error formulas, associate with the Eq. (16), and can be expressed in
the polynomials of G.

iv) Substitute the values of derivatives into the local truncation error.
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Based on the previous discussions, the derivatives can be given by

¥ = (gCn) + G)y(an),
v = ")y (o) + 28" )y () + (80on) + G) Py (),
2 = ¢W @) yen) + 48P )y (k) + 78" (n) (8 (xa) + G)y(xa)
+4(g' )y () + 68 (5) () + G)Y () + (8(x) + G y(xa),

We consider two cases in terms of the value of E:

e The Energy is close to the potential, i.e. G = V., — E = 0. In this case, only
the free terms of the polynomials in G are considered. Thus for these values of
G, the methods are of comparable accuracy. This is because the free terms of the
polynomials in G, are the same for the cases of the classical methods and of the
new developed methods.

¢ G>00rG «0.Then |G| = |V, — E| is a large number.

Based on the above procedure, we obtain the following asymptotic expansions of
the local truncation errors of the methods we have listed at the beginning of this section
(see [5-7]):

For the method EFRKNS5YV,

LT Egrrgnsy = h6(g(xn)y(xn)c2+(2g<xn>2y<xn>+4g’<xn)y’<xn)+6g”<xn)y(xn>)c
+g(xn)° y () + g 06a) (68 (6a) ' (xn)) + 78" () y ()
+48@ () () + (i) (48 (6)% + 8 (30)) ) /1800,
DLT Egrricnsv = h°(1549((g(0n)y' (i) + 33(x)g ()G + (4g () (608 (i)

02y (k) +3Y (808" (k) + (k)8 () G ) /2520000.

For the method RKN5PL-AM-DAM,

LT ERKN5PL—AM—DAM = h()( —2y(x0)G> — 6g(x) y(xn) G?

+(g% )y (en) + 28" (x0) Y (xn)
+21y(xn) 8" (x)) G+ (58D () y (1) +20y () g (xn)?
+308(xn)g/(xn)y/(xn) + 3Sg(xn)}’(xn)g//(xn)
+20y/(6)g® () + 5y (i) g ¥ (1)) ) /14400.

DLT EggnspL—aM-DAM = h° (y'(xn)G3 + (9y ()8 () + 38(xn)Y (x2)) G
+(18g (xn)y (xn) g’ (xn) + 3g(xn)?Y (xn)
+13Y(in)g" () + 11 (i) gD (60)) G ) /7200,
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For the method RKN5PL-DPL-AM,

LT ERKNSPL—DPL—AM = hﬁ( — 28y(x,)G> — 53g(x,)y (x,)G>
+ (452 (x) >y (xa) + 90g (xn)y' (x)
+325y(x,)8" (xn)) + 708 (xa)>y (xn) + 280y ()8 (x)?
+4208 (xn) 8" (x2)Y' (xn) + 4908 () y (X)€" ()
+280y (x,)g (xn) + 70y (xn)g @ (xn)) /201600.

DLT ERKNSPL-DPL-AM = h6(y/(xn)G3 + (9y (g (xn) + 3g(xn)Y (x,)) G
H18g(xn)y (xn)g' (xn) +3g(xn)?Y () + 13y (x)g” (xn)
+11y(x)g® ()G + (9g(x) 2y () g’ (xn)
+g(x)%y () + 108" (x)y" (x0)
+15y(xn)g/(xn)g//(xn) + 13g(xn)yl(xn)g”(xn)
+11g(x)y(xn)g® () + 5 () g™ (x)
+y (g™ () ) /7200.

For the method of RKN5H,

LT Erinst = h°(en)y () G2 + (28.0ca)y (o) + 48 (60)y ()

+6y(rn)g" (xn)) G+ () y () +4y(xn) g (xn)? + 68 (x)g (xn) Y ()
+7800n) ¥ ()8 (i) + 49 (g @ () + ¥ (x)g ™ () ) /1800,

DLT Ericxst = 7 (28 (i) y () G + (105 ()8 (60) + 58 (6) ¥ ()
+21y () 8" () G* + (4g(xn) >y (xn) + 28y (xn)g (x4)*
+248(xn)g (Xn)y' (xn) + 448 (x) y (x)g” (xn) + 24y (xn) g (x)
+16y(xn) 8™ () G + g(ra) 'y () + 288 () y (xn) g (xn)*
+128 ()28 ()Y () + 228 (xn) 2y ()" (xn) + 488" (x)y (xn)g”
15y () g (xn)* + 26y (xn) g (xn) 8 (xn) + 248 (xn)y (xn) g (xn)
+168(xn)y () g™ (xn) + ¥ ()8 (xn) + ¥ (xn) g (xn>)/16800.

For the method of EFRKNSS,

LT Egrricnss = h°(8(6)y(6n) G + (28 i)y (k) +4g' (60)y (60)+68” (60)y (60)) G
+800n)* y () + 8 00n) (68" 0in)y' (n) + 78" (xn)y (xn)
48D () () + ¥ (xa) (4 (i) + g9 (1)) ) /1800,
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DLT EEFRKNSS = h6(1549<(g<xn)y’(xn> + 3y g ()G + (4 (xa)y(xn)g ()

g2 (k) + 35 (en)g” () + ¥ (60)g D () G ) /2520000,

For the method of MODRKNA,

LT Evioprina = h(28 6y (0n) G + (3g(ea)?y (i) + 6/ (i)' (30)
+78" (xn)y () G + g (xn)> y () + g(xn) (68" (xn)y' (xn)
+7y ) g" () + 4y (1) g (xn)

3 (k) (4 () + 8 (1)) ) /1800.

DLT Eviovrina = h7 (= 150y(6)G* = 253y (x)g (6)G? + (32 () (22)

+648"(xn)y (xn) + 752y (xn)g” (x1)) G + (1808 (x4)>y (x)
+1260y (x2)g (xn)* + 1080g (x,)g' (xn) Y’ (xn)
+1980g () y (xn)g” (xn) + 1080y’ (x) g™ (x)

+720y (x) g™ (x2)) G + 458 (xn)*y (xn) + 12608 (x,)y (xn) g’ (xn)*
+5408 (x)% g’ (x0) Y’ (xn) + 990 ()2 y (xn)g” (xn)
+21608 (x2)y (xn)g" (xn) + 675y (x)g" (x4)?
+1170y (x0) g (xn)g P (xn) + 10808 (x)y (x) g™ (x)
+7208 (x)y (4)g @ (xn) + 270y () g (xn)

+45y(x,)g© (xn)) /756000.

For the method of MODRKNB,

LT Evopricn = h°((g06a)y (i) + 28/ (60)y (60) + 587 (6n)y(40)) G + g6y ()
+2(6) (68" (xn) Y (xa) + Ty (x)g" (xa)) + 4y (x) " (x)
+y i) (48 () + 89 (x)) ) /1800.

DLT Exioprins = 7 = 10y(6) G* = 40y ()3 (6,) G

+( = 218 0en)*y(xn) — 428" (xn)y (x)

+27y(x)g" () G* + (128 (xn) y () + 84y (xn)g (xn)*
+728(x)g (xn)y (X)) + 1328 (x) y (x)g” (xn) + 725 (x)g® (xn)
+48y (x) g™ () G + 3g(xn)*y (xn) + 848 () y (xn) g (xn)*
+36g(xn) g’ (xn) ' (xn) + 668 (xn) 2y (xn)g” (xn)
+144¢ (x)y ()8 (xn) + 45y (xn) g (x0)?

+78y ()8 (k) g () + 728 (1) () g (x)

+48 (o) y (g () + 18Y (68 ® () + 33 (68 (31)) /50400,
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In the above list, alower power of G indicates a slower increase of the corresponding
local truncation error for large values of |G| = |V, — E|.

5 Stability and phase properties of the new method

Lambert and Watson’s stability theory [77] was reformed by Coleman and Ixaru (see
Ref. [78]) for the periodicity of exponentially-fitted symmetric methods for y” =
f(x,y) which was further extended by Coleman and Duxbury [79] to v-dependent
RKN-type methods. Following their lines, we apply the modified RKN method (3) to
the test equation

y' =%y, A eRT, (18)

and obtain the difference equation

Yn+1 Yn
=M 9, V . 9 = h)\.,
(hy,2+1) @) (hyé)

where

(19)

—_ 02T N1, 025 T p7—1
M(Q,v):(l 02%6TN"le.y 1-02bTN c),

—0*p"N" ey 1-60%b"N"¢

withN =1 +6%Aande=(1,..., DT,
The characteristic equation of the modified RKN method (3) is given by

£2 —tr(M(8,v))& + det(M (8, v)) =0.

The stability, determined by the spectral radius p (M (CA v)), imposes restriction to the
step-size & which leads to the following definition:

Definition 3 For the modified RKN method (3) with the stability matrix M (6, v)
given by (19), a region in the 6-v plane

R={0,v)|0>0,v>0p(M®, ) <1}

is called the stability region of the method. Any closed curve defined by p (M o, v)) =
1 is called a stability boundary.

In determining the stability region of a method, it is convenient for us to use the
following equivalent conditions

det(M(G, v)) <1 and |tr(M(9, v))| < det(M(O, v)) + 1. (20)

In Fig. 1, we depict the stability regions of the two new modified RKN methods
MODRKNA and MODRKNB.
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Stability region of method MODRKNA

Stability region of method MODRKNB

0 05 1 15 2 25 3 385 4 45 5 0 05 1 15 2 25 83 35 4 45 5
0 0

Fig. 1 Stability regions of MODRKNA and MODRKNB

In practice, the frequency of the problem to be solved is not exactly known. Mostly
we can only have an estimate w of the true frequency. Therefore, the errors in phase
and in amplification factor will not vanish even if we have nullify the dispersion and
dissipation in the derivation of the methods. This leads to the following definition of
dispersion and dissipation.

Definition 4 (see [73]) The quantities

tr(M(G, v))

2,/det (M(Q, v))

are called the dispersion and the dissipation, respectively. Hence the method is said
to be dispersive of order q and dissipative of order p if

(6, v) = 6 — arccos , dO,v)=1—/det (M(6,)),

B0, v) = cp0TT + 001, d©,v) = cad? T OO,
where ¢y and ¢y are called the dispersion constant and dissipative constant, respec-
tively.
w v
For convenience of phase property analysis, we denote the ratio n by r, thus r = rh
Then the dispersion and the dissipation of the methods MODRKNA are

(r? — 1)(225 + 22572 + 43r%) o 5
0'+0©%), d@B)=
1512000 +O@), 46 3600

4 2
$©0)=— = D764 oed),

respectively, and the dispersion and the dissipation of the method MODRKNB are

2 N2
= D706 4 0¥,

2132 2 ~
(r 1)~ (26r 15)974—(’)(99), d©0) = —

50) —
@) 100800 3600

respectively. Therefore both the two modified RKN methods are dispersive of order
six and dissipative of order five, respectively.
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6 Numerical results

In this section, we examine the numerical performance of the new methods. In order to
show the competence of our new methods, we use seven fifth-order RKN type methods
as listed in Sect. 4.

We consider the numerical integration of the Schrodinger equation (1) with the
well-known Woods-Saxon potential

V(x) = coz(l —a(l - 2)),

where 7 = (exp (atx — b)) + 1) ' o= =50, a=5/3. b = 7. The problem is
solved on the interval [0, 15].

This potential was first put forward in the case of exponentially fitted algorithms
by Ixaru and Rizea [80] and it has been widely adopted to examine the quality of a
numerical method solving the Schrédinger equation. For this test potential, we study
the resonant-state problem and the bound-state problem, respectively.

6.1 The resonance problem
The so-called resonance problem is to find the energies (or resonances) E € [0, 1000]

for which the phase shift is equal to v /2. The boundary conditions for this problem
are

y(0) =0 and y(x)= cos(«/fx) for large x.

In the case of the Woods-Saxon potential, we follow the lines of [49,80] and choose
the fitting frequency

" V30+ E, xe€]l0,6.5],
| VE, x €[6.5,15].

The numerical results Ecaiculated are compared with the analytical solution Eanarytical
of the Woods-Saxon potential, rounded to six decimal places. In Fig. 2 we plot the
error —10g ¢ | Eanalytical — Ecalculated| versus N (with the integration step-size 1 /ZN )
for Eanalytical = 53.588872, 163.215341, 341.495874, 989.701916, respectively.

6.2 The Bound-states problem
The second problem is to find the energies in the bound states, that is, we wish to find

negative energies E < 0 which are such that the eigenfunctions vanish at both end
points of the integration range. The boundary conditions for this problem are
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Fig. 2 logjo(Eanalytical — Ecalculated) s a function of N for the resonant-state problem

y(0) =0 and y(x) =exp(—+v—Ex) for large x.

The numerical results Ecyiculated are compared with the analytical solution Eanatytical
of the Woods-Saxon potential, rounded to nine decimal places. In Fig. 3, we plot the
error — 1ogy | Eanalytical — Ecalculated | versus N (with the integration step-size 1/ 2N) for
Eanalytical = —48.148430420, —34.672313205, —13.436869040 and —3.908232481,
respectively.

From Figs. 2 and 3, it is seen that the new method MODRKNB outperforms the
other methods we select.

7 Conclusions and discussions

This paper proposes to consider the modified RKN methods with frequency-dependent
coefficients. Based on a classical four-stage fifth order RKN method, the parameters
of the corresponding modified RKN methods are obtained in two different ways: (1)
For two-parameter case, using one test equation y” = —w?y, simply nullify the dis-
persion and the dissipation and obtain the expressions of the two parameters y» and y»;
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Fig. 3 logjo(Eanalytical — Ecalculated) s a function of N for the bound-state problem

(2) For the four-parameter case, using two test equations y” = —w?y and y” = —w?y,
nullify the respect dispersion and the dissipation and obtain the expressions of the
fours parameters y;, (i = 1,...,4) as functions of vi = hwj and v, = hw?. The
final expressions of y; (v), (i = 1, ..., 4) are achieved by taking limits w; — w and
wy» — w. The stability and phase properties of the two new methods MODRKNA and
MODRKNB are examined and the error formulas are analyzed to show their theoret-
ical advantages. Numerical experiments are carried out on the Schrodinger equation
with the Woods-Saxon potential. Among all the methods we use in the experiments,
the method MODRKNB is the most efficient.

To explain the high efficiency of the new method MODRKNB, we investigate the
dispersion and dissipation from a novel point of view. Generally speaking, for numeri-
cal integrators of the same algebraic order, a higher dispersion order assumes a higher
accuracy. For integrators of the same algebraic order and of the same dispersion order,
a smaller dispersion constant assumes a higher accuracy. It is also true for dissipation.
In Figs. 4 and 5, we depict the curves of the dispersion constant |cs| and dissipation
constant |cy| as functions of r = w/A, respectively, for each of the seven methods
used in our first experiment. A method corresponding to a comparatively lower curve
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has a smaller dispersion/dissipation constant. As we can see in Figs. 4 and 5, the new
method MODPHARKS has the smallest dispersion constant and dissipation constant
among all the methods considered.

Finally we note that, in practical computations of oscillatory problems, the true
frequency is, in general, not available. The fitting frequency w contained in the coef-
ficients of the modified RKN methods is just an estimate of the true frequency. For
techniques of estimating principal frequencies we refer to the papers [59,65,81].
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